Point-Based Backup for Decentralized POMDPs:
Complexity and New Algorithms

Akshat Kumar
Department of Computer Science
University of Massachusetts
Ambherst, MA, 01003
akshat@cs.umass.edu

ABSTRACT

Decentralized POMDPs provide an expressive framework
for sequential multi-agent decision making. Despite their
high complexity, there has been significant progress in scal-
ing up existing algorithms, largely due to the use of point-
based methods. Performing point-based backup is a funda-
mental operation in state-of-the-art algorithms. We show
that even a single backup step in the multi-agent setting
is NP-Complete. Despite this negative worst-case result, we
present an efficient and scalable optimal algorithm as well as
a principled approximation scheme. The optimal algorithm
exploits recent advances in the weighted CSP literature to
overcome the complexity of the backup operation. The poly-
time approximation scheme provides a constant factor ap-
proximation guarantee based on the number of belief points.
In experiments on standard domains, the optimal approach
provides significant speedup (up to 2 orders of magnitude)
over the previous best optimal algorithm and is able to in-
crease the number of belief points by more than a factor of
3. The approximation scheme also works well in practice,
providing near-optimal solutions to the backup problem.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: [Dynamic programming, Mul-
tiagent systems, Intelligent agents]

General Terms
Algorithms, Theory

Keywords
Multiagent planning, DEC-POMDPs

1. INTRODUCTION

Decentralized partially observable MDPs (DEC-POMDPs)
have emerged in recent years as an important framework for
modeling sequential decision making by a team of agents [3].
Their expressive power makes it possible to tackle coordina-
tion problems in which agents must act based on different
partial information about the environment to maximize a

Cite as: Point-Based Backup for Decentralized POMDPs: Complexity
and New Algorithms, Akshat Kumar, Shlomo Zilberstein, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10-14, 2010, Toronto, Canada, pp 1315-1322

Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1315

Shlomo Zilberstein
Department of Computer Science
University of Massachusetts
Amherst, MA, 01003
shlomo@cs.umass.edu

global reward function. Applications of DEC-POMDPs in-
clude multi-robot control such as coordinating the operation
of planetary exploration rovers [2], coordinating firefight-
ing robots [14], broadcast channel protocols [3] and target
tracking by a team of sensor agents [13]. However, the mod-
eling advantage comes with a price — solving a finite horizon
DEC-POMDP optimally is NEXP-Complete [3], essentially
rendering optimal approaches intractable.

Consequently, research has focused on approximate algo-
rithms, of which point-based approaches have shown great
promise in scaling up and finding good quality policies [17].
As in single agent POMDP point-based approaches [18, 15],
the key idea is to compute a set of reachable beliefs using
a heuristic and compute the value function by performing a
sequence of point-based backups. However, the backup tech-
nique differs fundamentally in the multi-agent setting. In
POMDPs, backups can be performed efficiently. However,
due to the decentralized nature of a DEC-POMDP policy,
naively performing such backups requires exponential effort
in the number of observations [17].

Recently, there have been substantial efforts to solve this
problem more efficiently because point-based backups con-
stitute the core of any point-based algorithm. For example,
the IMBDP algorithm [16] avoids exponential blowup by
limiting the full backup to a fixed number of observations
which are most likely to occur at the given belief point. In
the MBDP-OC algorithm [4], an information-theoretic crite-
rion is used to merge observations into sets while minimizing
the total loss in solution quality. Dibangoye et al. [8] take
a different approach to solving this problem optimally by
using a branch-and-bound search. While in the worst case,
the complexity remains the same, their approach is signifi-
cantly faster than previous approaches in practice. Amato
at al. [1] further improve the scalability of the previous al-
gorithm by limiting the possible next step sub-policies using
state reachability analysis.

In our work, we elicit the key reason for the underlying
difficulty of performing decentralized backups. We show
that performing the backup step optimally is NP-Complete
by reduction from the NP-Complete team decision prob-
lem in control theory [19, 5]. Despite this negative re-
sult, we present an optimal algorithm by reformulating the
backup problem as an instance of the weighted constraint
satisfaction problem (WCSP). The optimal algorithm uses
the state-of-the-art constraint solver AND/OR branch-and-
bound search (AOBB) [11]. However, for AOBB to perform
well, it is crucial to select a good heuristic. We use the
existential directional arc consistency (EDAC) heuristic [6],

which enables us to solve the backup problem significantly
faster (up to 2 orders of magnitude) than the previous best
algorithm PBIP [8, 1]. This allows us to increase the number
of belief point by a factor of 3 resulting in increased solu-
tion quality. Our detailed experimental results also show
that performing backups with the new algorithm takes a
very small fraction of the total runtime, essentially shift-
ing the computational bottleneck to evaluating and storing
joint-policies.

Based on recent results on approximating team decision
problems [5], we also present a poly-time approximate algo-
rithm for the decentralized backup operation, guaranteeing
a solution within a factor of 1/MaxTree of the optimal value,
where MaxTree denotes the maximum number of policies re-
tained at each step per agent while performing bottom-up
dynamic programming. In the experiments, we show that
this approximation scheme performs near-optimally, com-
pared to the WCSP-based optimal algorithm.

2. THE DEC-POMDP MODEL

In this section, we introduce the DEC-POMDP model
and develop the optimality condition for the decentralized
backup. For simplicity, we present the model for two agents,
but it can be easily generalized to any number of agents.

The set S denotes the set of environment states, with a
given initial state distribution bg. The action set of agent 1 is
denoted by A;. The state transition probability P(s’|s, a1, as)
depends upon the actions of both the agents. Upon taking
the joint action (a1, a2) in state s, agents receive the joint re-
ward R(s,a1a2). Z; is the finite set of observations for agent
1. O(s,a1az,z122) denotes the probability P(z122|s,a1a2) of
agent 1 observing z; € Z; and agent 2 observing z2 € Z2
when joint action (a1, a2) was taken and resulted in state s.

A local policy for agent i is defined as a mapping from
local observation histories to actions. A joint policy is a
tuple of local policies, one per agent. The goal in a DEC-
POMDP is to find the joint policy that maximizes the total
expected reward over some given finite horizon T'.

2.1 Point-based backup in DEC-POMDPs

The intractability of optimal POMDP algorithms can be
attributed to planning for the complete belief space. DEC-
POMDPs are further disadvantaged as the joint policy has
to be represented explicitly (mapping from individual obser-
vation histories to actions) and cannot be extracted directly
from the value function. The idea of planning for a finite
set of belief points has lead to several successful point-based
POMDP algorithms in recent years such as PBVI [15] and
Perseus [18] among others. All these algorithms compute a
set of reachable belief points using a heuristic such as the un-
derlying MDP policy or using randomized trajectories [18].
The value function is computed over these beliefs by per-
forming a sequence of point-based backups. A single backup
step entails finding the best action for the given belief point
and deciding which sub-policy (a-vectors for POMDPs) to
execute upon receiving each of the possible observations.
Although, the resulting value function may not be the opti-
mal one, in practice it has been shown that these heuristics
work reasonably well while keeping the solution technique
tractable. For POMDPs, such point-based update can be
performed efficiently using polynomial time in all problem
parameters [15]. We develop below optimality conditions for
point-based backup in DEC-POMDPs and show that per-

1316

forming this operation optimally is inherently more complex
that in POMDPs.

In DEC-POMDPs, the joint value function cannot be de-
scribed by a collection of a-vectors as in POMDPs. Instead,
all existing point-based approaches use an explicit tree struc-
tured representation of the local policy for each agent, where
a node denotes the action to be executed and edges corre-
spond to the observations. Edges connect to subtrees, which
are executed by the agent when the corresponding observa-
tion is received. For two agents, the joint-value of the trees
p of agent 1 and ¢ of agent 2 in the starting state s can be
computed recursively as follows:

R(s,ap,aq) + Z ZO(sl,apaq,zwz)

z1,22 s'€S

P(8/|SvaP7CL¢Z)V(p lquzasl) (1)

Vi(p,q,s)

where a, and a4 refer to the actions defined at the root of the
trees p and ¢, edges corresponding to observations z; and z»
connect to respective subtrees p*' and ¢*2. Consequently,
the value for a belief point b can be defined as

V(p,q,b) = b(s)-V(p,q,5)

seS

(2)

As in POMDPs, a fixed number of policies are retained dur-
ing each dynamic programming step—one per belief point.
In the backup step, the best joint-policy (p,q) for a belief
b is constructed by finding the joint action (ai,as2) to be
performed at the root of (p,q) and determining for each
agent, the sub-policy they will follow upon receiving the
corresponding observations such that the policies p and ¢
maximize the value V(p, ¢,b). Since the value V' depends on
the joint policy, the best sub-policy for an agent cannot be
determined in isolation of each other. Let us define decision
rules 47 for each agent 7 and every action a; available to
agent 7. 4" maps the observations of agent i to the set of
available sub-policies for the next step when the immediate
action executed is a;. For example, ;' : Z; — P, where
P denotes the set of available sub-policies for agent 1. The
dynamic programming equation can be written as follows:

|

Vi(b) = max -

a
ay,az,87%,8,

Z R(s,a1a2)b(s)+ Z Pr(zzz2]aiaz,b)

seS 21,22

V(6 (1), 502 (za,b')] 3)

where b’ = 7(b, a1a2, z122) is the updated belief after agents
take the joint action (a1, a2) and receive observations (z1, 2z2).
It can be calculated in a straightforward manner using Bayes
rule. Upon substituting its value, the final optimality con-
dition is as follows:

{Z R(s,a1a2)b(s)+ Z Z O(s/7 aia2,2122)

seS
P(S/\S’alaz)V@Tl(Zl),532(22),8/)17(8)} (4)

Vi (b) = max

ay gag
a1,a2,6; " ,0y 21,20 5,50

The above equation does not admit efficient solutions and,
as we show next, it is NP-Complete to find the optimal solu-
tion. Intuitively, the reason is that solving the above equa-
tion requires optimization over functions ¢ for each agent
and the space of all possible mappings J is exponential in
the number of observations.

2.2 Complexity of decentralized backup

Before establishing the complexity, we introduce the NP-
Complete team decision problem (TDP) [19, 5]. In TDP,
there are two decision makers, each of which observes some
local component of the system state. That is, if (y1,y2) €
Y1 x Ys is a system state, then agent 1 observes only y; and
agent 2 observes y2. The goal of the agents is to choose
an action (ui,u2) € Up x Uz which maximizes the joint
reward 7(y1,y2,u1,u2) based only upon their local obser-
vation. Stated formally, the goal is to find decision rules
Y1 : Y1 — U and 72 : Yo — Uz that maximize the expected
reward, assuming each state is equally likely. That is,

max > e,y m (), 2 (v2))
Y1,Y2

THEOREM 1. Solving the decentralized backup problem op-
timally is NP-Complete.

ProOOF. We reduce the TDP to a two agent DEC-POMDP
M where taking one step backup is equivalent to solving the
TDP. It is clear that the backup problem is in NP, because
given a policy mapping §;, we can evaluate the R.H.S. of
Eq. 4 in polynomial time.

There are 1 + |Y1]|Y2| states in M. s is the initial state
s.t. bo(s) = 1. The rest of the system states are denoted by
Sy1yaV(y1,y2) € Y1 X Ya. The observation sets of the agents
are: Z1 = Y7 and Zs = Y5. The action space is defined as:
Ay = Uy and Az = Us. The state s transitions with equal
probability to each state sy, ,, regardless of the action taken
and P(s|s) = 0. The observation probabilities are also in-
dependent of the action taken and observations identify the
resulting state deterministically. That is, O(Sy,y,, z122) = 1
if y1 = 2z1 and y2 = z2, else it is zero. The reward for any
joint action in the initial state s is 0 and the horizon for the
problem is 2. The rest of the reward function will be defined
shortly. First, note that the backup Eq. 4 can be written as

|:Z Z P(sylyz‘s)o(sylyQ,leg)

21,22 Syjy2
V(81(21),02(22), 5y14,)

Vi(bo)

max
81,62

In the above equation, we used the fact that R(s,:) = 0
by the problem construction and that any action can be
taken at the initial belief by as state transition and observa-
tion probabilities are independent of actions. As the prob-
lem horizon is 2, V(-,-,-) is simply the immediate reward
R. Since observations identify the resulting state determin-
istically and P(sy,y,|s) = 1/|Z1]|Z2|, the equation can be
further simplified as follows:

?11%)2([Z R(52122761 (Zl)a(S?(ZZ)) (5)

21,22

Vi (bo)

1
21| Z|
Now, we set the rest of the reward function such that

R(82,29,01,02) = T(Yzy s Yzo, Uay s Uas) V2,20 € Y1 X Yo

where y., and uq, are the counterparts of the DEC-POMDP
in the given TDP instance. Clearly, the reduction from TDP
to the DEC-POMDP has polynomial complexity.

Finally, we can show that there exists a solution to the
TDP problem providing total reward W if and only if there
exists a solution to the backup problem achieving a reward of
W/(|Z1]|Z2|). This is straightforward to see as the functions

1317

~; from the TDP instance map directly to §; and vice-versa.
The reward function for the DEC-POMDP is the same as
the reward function for the TDP. [

Next, we develop new algorithms for solving the decentral-
ized backup problem efficiently and in a principled way.
First, we detail the poly-time approximation scheme, which
provides a constant factor quality guarantee. Then we de-
scribe the optimal approach based on WCSPs.

3. APPROXIMATE BACKUP

We have shown previously that TDP <, Backup, there-
fore, Backup <, TDP by the property of NP complete-
ness. We can further show that there exists an L-reduction
(or the linear reduction) for the later, which preserves the
approximability feature. That is, if there exists a a ap-
proximation algorithm for TDP, then there also exists an «
approximation algorithm for the backup problem. We do
not describe this reduction in detail, but directly describe
the algorithm for the backup problem which provably gives
a solution within 1/MaxTree of optimal. For details of the
original TDP approximation, we refer to [5]. The MaxTree
parameter refers to the maximum number of available sub-
policies (for either agent) for the next step while performing
one step backup.

First, based on the optimality Eq. 4, we define the con-
tribution of sub-policies p € P of agent 1, ¢ € Q of agent 2
for a given joint action (a1,a2) and observation (z1,z2) as
follows. We will omit mentioning the current belief b as long
as it is unambiguous.

Ra1a2(zl,z27p7 Q) = ZO(SI,a1a2,Z122)P(s/\s,a1a2)

V(p,q,s")b(s)

The key idea of the approximation scheme is as follows. It
uses a heuristic to set the policies agent 1 will follow upon
receiving each observation z; € Z;. Once the sub-policies
for agent 1 are fixed, then a simple maximization rule allows
us to find the best sub-policies for agent 2. Similar analysis
can be done by considering agent 2 first and the best of the
two becomes the solution to the backup problem providing
a bounded approximation. The first step is the construction
of a marginalized reward function for each observation z;
and available sub-policy p of agent 1.

Z RalaQ(Z:L?ZZ)p?q)

22€7Z2,9€Q

R(fla2 (Zl,p) =
Another interpretation of the above function is that agent
2 follows every policy with equal probability upon receiving
any observation, i.e., assuming a stochastic policy. Next,
based on this reward function, we can fix the sub-policies of
agent 1 for each observation z; as follows:

591 (21) = argmax R31%2 (21, p)
peP

Now, finding the best sub-policies for agent 2 is straightfor-
ward as follows:

35%(22) = argmax Z R%2 (21, za, 071"

q€Q

(Z1)7Q)

zZ1

The above equation follows by realizing that once all the
sub-policies for any one agent are fixed, then Eq. 4 allows us

Algorithm 1: ApproxBackup

1 b « selected belief for backup

2 P « available sub-policies for agent 1

3 () < available sub-policies for agent 2

4 for (ai,a2) € A1 X Ag,(z1,22) € Z1 X Z2,(p,q) € P X Q
do

5 R (21,22,p,q) =
Y e O(8',a1a2, 2122) P(s'[s, a1a2)V (p, q, s")b(s)
6 Calculate marginalized reward function for agent 1—
7 for (a1,a2) € A1 X A2 do
8 for z1 € Z1, p€ P do
9 ‘ R(llla2(217p) = ZzQEZQ,qu Ra1a2(217227pa q)
10
11 bestSol = —oc0
12 for (a1,az2) € A1 X Az do
13 07 (1) =argmax,c p BT **(21,p) V21 € Z1
14 052 (z2) =
argmax, . 221 R (21, 20,67 (21),q)V22 € Zo
15 currentVal = calculate V' (b) using Eq. 4
16 if currentVal > bestSol then
17 bestSol < currentVal
18 a; — a;, 6?;<—5f“v’i€{1,2}
19
20 Repeat block 6-19 for agent 2

21 return best af,d?; Vi € {1,2}

to find the optimal sub-policy for the other agent for each
observation independently. Also, note that this process can
be performed recursively by iterating over agents until an
equilibrium is reached. This is also referred to as person-by-
person optimal policies in the context of control theory [5].
However, the approximation guarantee does not depend on
this enhancement. One caveat to this approach is that the
approximation guarantee requires the rewards or the sub-
policy contributions to be positive. We note that locally
optimal policies have also been explored in the context of
DEC-POMDPs [12]. However, they optimize the complete
policy whereas we focus on a single backup step.

Once, we have calculated such decision rules for each joint
action, we can find the best joint action by plugging in the
decision rules into Eq. 4. A similar analysis can be per-
formed by considering agent 2 first and finding the best joint
policy. The best of the two cases is used as the final solution
of the backup problem.

Algorithm 1 shows how approximate backup is performed.
The input to this algorithm is the belief point and the set of
sub-policies for the next step for each agent. The remaining
steps are self explanatory in light of the above discussion.
Next, we analyze the complexity of this algorithm.

3.1 Complexity

Calculating the sub-policy contributions in Algorithm 1
takes O(|A*| Z|?|P||Q||S|?) time, where |A| and |Z| denote
the maximum size of the action and observation sets. This
can be further simplified to O(|A|?|Z|*MaxTree?|S|?) by re-
alizing that MaxTree bounds the size of policy sets P and Q.
Calculating the marginalized reward function for any agent
takes O(|A|*|Z|*MaxTree?) time. Finally, finding out the
best policy (block 12-18) takes O(]A|?|Z|?MaxTree) time.

Therefore, the complexity of Algorithm 1 is quadratic

1318

in the problem parameters — O(|A|?|Z|*(MaxTree? + |S|?)).
Most importantly, it is no longer exponential in the obser-
vation set size and can be implemented efficiently for large
DEC-POMDP instances. Also, it is worth noticing that
the approximation factor 1/MaxTree does not depend upon
the number of observations, which is the root of the NP-
Completeness of the problem. Tsitsiklis and Athans [19]
show that the TDP problem remains NP-Hard even when
the action set size is 2. Thus, when the MaxTree parame-
ter is 2, this approach provides 1/2 approximation to this
NP-Complete problem. In the next section, we present the
optimal approach for solving the backup problem.

4. OPTIMAL BACKUP APPROACH

The optimal algorithm for the decentralized backup lever-
ages recent advances in the weighted constraint satisfaction
(WCSP) literature by reformulating the backup problem as
finding the least cost solution of a WCSP instance. We
briefly introduce the weighted constraint satisfaction prob-
lem below; further details can be found in [6].

A WCSP is a tuple (X, D,C, k). X = {X1,...,Xn}isa
set of variables. D is a set of domains D; for each variable
Xi. D; is discrete and denotes all possible assignments to
the variable z;. C is a set of constraints. Each constraint
C's is defined over a subset of variables S C X and maps the
tuples corresponding to assignments on S to a real valued
cost. For example, Cy; : D; x D;j — [0...k], where Cj; is
a constraint over variables X; and X; and k denotes the
upper bound on the cost of any assignment tuple. When
a constraint assigns a cost k to any assignment, it implies
that the assignment is forbidden, else it is allowed with the
corresponding cost.

The goal is to find the complete assignment X to variables
such that the global cost is minimized. X [S] represents the
projection of tuple X over variables in S. The total cost is

chec CS(X[SD-

4.1 Decentralized backup as a WCSP

In this section, we describe the reformulation of the backup
problem as a WCSP instance. A constraint-based formula-
tion has been recently used for speeding up DEC-POMDP
algorithms [9]. However, that formulation is not applicable
to the backup problem we target. First, we note that, for
each joint action (a1, az2), the optimality equation (Eq. 4)

can be written as follows:
VA2 (b) = Z R(s,a1a2)b(s) + max Z Z O(s', a1a2, 21 22)
21,22 s,s’

81,62
sesS
P(s'|s,a1a2)V (61(21), 02(22), s")b(5)

If we solve the above equation optimally, then finding V;(b)
is easy as it requires iterating over all the joint actions, which
has polynomial complexity. In the above equation, only the
second summation depends on the decision rule §;. There-
fore, the optimization problem becomes

Z Z O(s',a1a2, z122) P(s'|s, a1a2)

61,62
z1,22 s,s’

V(61(21), 62(22), 8")b(s) (6)

We seek to optimize the above equation by reformulating
it as a WCSP for each joint action (ai,a2). The WCSP
parameters are detailed below.

Agent 1

Agent 2

Figure 1: Primal graph of a WCSP for the backup
problem. Each agent has three observations

X Variables: We create one variable for each observation
of each agent. For example, if z1; € Z; is a possible
observation for agent 1, then variable X.,, is created.

Domain: The domain of all the variables corresponding
to an agent is the set of all next step sub-policies available
for that agent. For example, if P denotes the set of sub-
policies for agent 1, then D.,, = {p|p € P} Vz1; € Z:.
Constraints: A constraint is created for every pair of
observations from agent 1 and 2. That is, we create a
binary constraint C'; 2; between variables X, and XZZJ.
for every pair of observations z1; € Z1 and 22; € Zs.

Valuations: The valuation for each constraint C1;25 €
C is defined as in Eq. 6.

Crizi(p,q) = CM*ZO(S,,a1a2,211‘22j)P(s'|s,a1a2)

V(p,q,s")b(s)

where « is a large positive constant which is used to
transform the maximization objective bf Eq. 6 to mini-
mizing the WCSP cost. Intuitively, the second part of
the above equation (summation over states) represents
the value accrued when agent 1, upon receiving obser-
vation zp;, follows the sub-policy p and agent 2, upon
receiving observation zzj, follows the sub-policy q.

It is easy to see that minimizing the objective function of this
WCSP, Zcu 2 Chi2j, is equivalent to maximizing Eq. 6.
The complete’ assignment X represents the decision rules J;
for each agent and the optimal assignment solves Eq. 6. The
global cost of assignment X is given by

Z Cli’gj = ‘ZlHZQ‘OK— Z ZO(S/,alag,zusz)

C1i,2;5 214,225 s,s’
P(S,‘S’ ala?)V(X[XZuL X[XZQJ‘L Sl)b(s)

We can visualize this WCSP by using its primal graph.
The primal graph of a WCSP with binary constraints is a
graph whose nodes are the variables of the problem, and
each edge connects a pair of variables that occur together in
the scope of a constraint function. Fig. 1 shows the primal
graph of the WCSP for a backup instance when each of the
two agents has three observations. Each edge represents a
constraint.

4.2 Solving the WCSP

Unfortunately, optimally solving a WCSP is NP-Hard.
However, as constraint reasoning has numerous practical ap-
plications, many algorithms exist which can solve them ef-
ficiently either using dynamic programming or search tech-
niques. It has been shown that if the primal graph of a

1319

WCSP has bounded tree-width, then the WCSP can be
solved efficiently using dynamic programming with the bucket
elimination algorithm [7]. However, the WCSP instance for
the backup problem is a complete bipartite graph as shown
in Fig. 1. For such graphs, the tree-width is O(|Z]) regard-
less of the variable ordering used. Since the bucket elimina-
tion algorithm has complexity exponential in the tree-width,
it cannot scale well with the number observations. There-
fore, we used a search-based solver, AOBB [11], which uses a
heuristic function to prune a large part of the search space.
The heuristic function provides a lower bound for the WCSP
at each step of the search. We used the state-of-the-art
heuristic ezistential directional arc consistency (EDAC) [6].
We tried other heuristics too, such as the mini buckets [11],
however EDAC outperformed the others by a significant
margin, sometimes expanding an order of magnitude less
nodes. Next, we explain key differences between our ap-
proach and the previous optimal approach PBIP [8], describe
the EDAC heuristic and explain why it outperforms PBIP.

4.2.1 Comparison with PBIP

While PBIP is also a search algorithm [8], our approach is
fundamentally different. The key differences lie in how the
search process is structured and how the heuristic function
is computed. In PBIP, a node represents a partial joint-
policy tree, where the sub-policies that agents will follow are
only specified for some joint observations and not for oth-
ers. Expanding a fringe node requires selecting an unspeci-
fied joint observation and generating all possible successors
by attaching all possible subtrees to this joint-observation,
which number MaxTree?. This is one aspect where our for-
mulation differs from PBIP. In our approach, the search does
not take place over joint observations, but over individual
observations of an agent (see Fig. 1). Consequently, the
number of successors of a node is only MaxTree. The depth
of the search tree in our case is 2|Z|, whereas in PBIP it is
|Z]. However, the worst-case complexity remains the same
because the branching factor in our case is MaxTree and
in PBIP, it is MaxTree?. By searching over the space of
joint observations, PBIP loses the structure present in the
backup problem whereas our approach explicitly represents
this structure using a constraint graph (Fig. 1). The heuris-
tic function we use, EDAC, explicitly utilizes this constraint
graph and produces much tighter bounds than PBIP.

4.2.2 Details of the EDAC heuristic

There is also a significant difference between the heuristic
function used in PBIP and the EDAC heuristic. In PBIP,
the upper bound of a backup problem is calculated by select-
ing the best joint sub-policy for each pair of joint observa-
tions where the sub-policy is unspecified. We show using an
example, that this heuristic may lead to much worse bounds
compared with EDAC. First, we introduce some basic con-
cepts related to EDAC. The details can be found in [6].

EDAC works by maintaining local consistency properties.
Let Cy denote the lower bound of a WCSP instance, initially
Cy = 0. A variable X; is node consistent (NC) if for all
values a € D;, Cy + Ci(a) < k, and Ja € D; such that
Ci(a) = 0, where C; is the unary constraint on X;, k is the
upper bound of the WCSP. A WCSP is NC* if every variable
is node consistent. The rationale behind node consistency is
that if for a variable X;, C;(a) > 0Va € D;, then the lower
bound Cy4 of the WCSP can be incremented by «, where

XZZ]

i
o O G
Nio¥ N

Q)
O

®
®

FIBs
EEEE

©
®

21

C, =
(c)
Figure 2: (a) Backup instance as a WCSP, (b) Arc
consistency, and (c) Node consistency

o = mingep,; C;(a), and the WCSP can be transformed into
an equivalent problem. Another property is arc consistency
(AC™). Given a binary constraint Cjj, b € D; provides a
simple support for a € D; if Cij(a,b) = 0. A variable z;
is arc consistent if each a € D; has simple support in every
constraint C;;. A WCSP is AC™ if every variable is node and
arc consistent. The intuition behind this property is that,
if a variable is not arc consistent, then by enforcing the arc
consistency, some costs from its binary constraints can be
projected on its unary constraint, which may violate its node
consistency. Then by enforcing node consistency again, the
lower bound can be increased further. We illustrate these
consistency techniques using Fig. 2.

Fig. 2(a) shows the backup problem for two agents as a
WCSP with each agent having 2 observations. Each rect-
angle represents a variable corresponding to an observa-
tion. Domain values are shown in small circles implying
each agent has two sub-polcies to choose from. Lines across
variables denote valuations for that constraint. Each dashed
line has valuation 1, the rest are shown alongside the solid
lines. Variable Xz,, has zero valuations for each of its con-
straints, so they are not shown. Fig. 2(b) shows the equiva-
lent WCSP after enforcing arc consistency. Notice that for
constraint Cf1,21 and variable value X.,, = 0, every value
of variable X.,, provides valuation 20. Therefore, this cost
can be subtracted from this constraint and transferred to the
unary constraint on X, ,. Similarly, a cost of 1 is incurred
for the constraints Ch1,20 when X.,;, = 0. Hence, it is also
added to the unary constraint on X;,, = 0 resulting in total
cost of 21. Similarly, the unary constraint on X.,, =1 has
cost 51. The resulting WCSP (in Fig. 2(b)) is not node con-
sistent as no domain value of variable X, has unary cost
0. Therefore, we add the minimum of unary constraint cost
(= 21) to the WCSP lower bound Cy4 and subtract it from
the respective valuations. Fig. 2(c) shows the NC* WCSP
with a lower bound of 21. This bound also turns out to be
the optimal cost.

Now consider for comparison how the PBIP-like heuristic
performs. It will take the least cost for each joint observa-
tion and sum them up for calculating the lower bound of the
instance. For observations (z11, z21), the least cost is 1 when
X.,, =1, X.,, = 0. Similarly, for observations (z11, z22),
the least cost is also 1. Therefore, the heuristic will estimate
the lower bound to be 2, which is far from the accurate
bound produced by arc consistency. The main reason for
the inaccuracy of the PBIP heuristic is that it ignores the
dependencies among multiple observations by considering
only a group of 2 at a time, whereas arc consistency prop-
agates constraints to estimate a much tighter lower bound.
This is also reflected in the computation cost of the heuris-
tics — for PBIP, it is O(|Z|?MaxTree?) and for EDAC, it
is O(|Z|*MaxTree? max{|Z|MaxTree, k}). Although, EDAC

1320

is computationally more expensive than PBIP, its accuracy
pays off well by exploring very few nodes to find the optimal
solution as shown in the experiments section.

We conclude this section by highlighting the generality of
the approximate and the optimal backup techniques we have
developed. Both of these approaches are independent of the
DEC-POMDP algorithm used and can be incorporated into
any point-based solver. Furthermore, these approaches can
be adapted with only minor modifications to other models
of decentralized decision making such as Bayesian games,
which have been used to solve DEC-POMDPs [10, 14]. The
experiments in the next section confirm that by combining
diverse concepts from control theory and constraint satisfac-
tion, the scalability of existing approaches to decentralized
sequential decision making can be improved dramatically.

S. EXPERIMENTS

We incorporated our backup algorithms into the state-of-
the-art point-based solver MBDP [17]. We compared both
the WCSP-based optimal algorithm named Constraint based
point backup (CBPB) and the approximate scheme Team de-
cision problem based policy iteration (TDPI) with the best
existing approach PBIP [8], which also solves the backup
problem optimally and is built upon MBDP. We used the
latest version of PBIP that uses incremental policy gener-
ation [1] to further enhance its performance. Experiments
were performed on a Linux machine with 2GB RAM and
2.6GHz CPU. We used the largest DEC-POMDP bench-
marks: the box pushing problem [16] and the stochastic
Mars rover [1]. Each data point is an average over 10 runs.

The aim of our experiments is threefold. First, we demon-
strate the computational advantages of CBPB over the PBIP
algorithm in terms of execution time and the ability to in-
crease the number of belief points — CBPB provides more
than 2 orders of magnitude of speedup for some settings and
is about an order of magnitude faster on average, and can in-
crease the number of belief points (the MaxTree parameter)
by more than a factor of 3. Second, we show the scalability
of CBPB by explicitly comparing the actual time required
for performing all the backups versus the total execution
time. We show that as we increase the MaxTree parameter,
the bottleneck becomes evaluating the joint-policies. CBPB
can still solve the larger search problem without considerable
overhead expanding sub-hundred nodes on average. Finally,
we show the accuracy of the TDPI approximation scheme,
which produces near-optimal solution to the backup problem
and has polynomial complexity.

Fig. 3(a) shows a comparison of CBPB with PBIP on
the Box pushing domain (|S| = 100, |A;| = 4, |Z;| = 5)
with varying MaxTree values for horizon 10. Clearly, CBPB
provides significant savings over PBIP, whose time require-
ments become excessive very quickly upon increasing the
number of belief points. For MaxTree = 8, CBPB is about
500 times faster than PBIP, which takes over 19,000 sec,
whereas CBPB takes only 32 sec. Furthermore, CBPB can
scale up the number of belief points to 30 whereas PBIP can-
not scale above 8 belief points. Fig. 3(b) shows how solution
quality is impacted by increasing the number of belief points.
Overall, when MaxTree is increased from 3 to 30, solution
quality does increase significantly from 102 to 135. How-
ever, the rate of increase with belief points is slow, which
indicates that the number of beliefs has to be increased fur-
ther to gain higher solution quality. This observation also

100000

100000 EFB 150
r PBIP —~—
10000 J
S / S
2 1000 |/ E
~ /
i) >
£ 100 |/ £
= / o
10
1
5 10 15 20 25 30 3
Trees

(a) Box pushing: Time comparisons

5 10
Trees

(b) Box pushing: Solution quality

CBPB ==Xz CBPB Ex=xzxd
< 10000
@
&
o}
£
[1000
100
15 20 30 5 10 15 20

Horizon

(¢) Mars rover: Time comparisons

Figure 3: Comparisons with PBIP

favors CBPB, which can potentially increase this parameter
further as highlighted in the next part of the experiments.

Fig. 3(c) shows time comparisons with PBIP on one of
the largest DEC-POMDP domains — stochastic Mars rover
(IS] = 256, |A;| = 6, |Z;] = 8) with varying horizon and
MaxTree = 3. Again, we observe that as the horizon is
increased from 5 to 20, the speedup provided by CBPB in-
creases significantly. At horizon 20, CBPB is about 33 times
faster than PBIP. For Mars rover too, CBPB can increase
the belief points from 3 to 10 as shown in Table 1. The run-
time of CBPB does increases, but we will show later that this
increase is largely due to the overhead of evaluating joint-
policies in MBDP. The actual search time remains a tiny
fraction of the total time. Solution quality increases as well
by increasing MaxTree. For horizon 20, with MaxTree = 3
the best policy value is 37.8; with MaxTree = 10, it increases
to 43.6. For this domain, we could not increase MaxTree fur-
ther, as simply storing and evaluating all joint policies would
exceed the system RAM of 2GB.

For the next set of experiments, we emphasize the scal-
ability of CBPB by explicitly comparing the actual time
required for performing all the backups versus the total ex-
ecution time (all time units in sec). Table 2 shows the total
search time (time required by the WCSP solver) over all
point-based backups and the total execution time of CBPB
for box pushing for horizon 10. Clearly, even with increased
MaxTree, the total search time remains a small fraction of
the total time. This is because the average number of nodes
expanded by CBPB for each backup (shown in the last col-
umn) remains below 100 for each setting. Table 3 shows
similar results for the Mars rover domain with MaxTree=10.
The overall execution time for CBPB is relatively high com-
pared to box pushing as the rover domain’s state and obser-
vation space is much larger than box pushing and evaluating
joint-policies is much more expensive. But, notice that per-
forming backups requires only a tiny fraction of the total
time. Nodes expanded per backup instance also remain low.
These results are a further testimony to the accuracy of the
EDAC heuristic and show that if the memory limitations of
MBDP are overcome (using more efficient data structures),
then CBPB can scale to large numbers of belief points.

For the last set of experiments, we measure the accuracy of
the approximate scheme TDPI. TDPI works by setting the
policies of one agent using a heuristic approach and then
sequentially optimizing the policy of the other agent until
no improvement is possible. A natural yardstick to gauge
the accuracy of the TDP heuristic is to set the policy of one
agent randomly and then sequentially optimize the policy of
the other agent similar to TDPI. Fig. 4(a) shows the compar-

1321

Horizon
MaxTree 5 10 15 20
3 197.2 301.8 363.4 457
10 276.6 | 1250.3 | 2000.6 | 2729

Table 1: Mars Rover: Execution time

l MaxTree [Search Time [Total Time [Nodes Exp. ‘

5 2.4 (18.3%) 13.1 27.6
10 6.1 (13.1%) 46.7 34.8
15 | 15.9 (15.5%) | 102.5 39.5
20 | 246 (16.3%) | 1511 80.5
30 60 (14.8%) 404.2 82.1

Table 2: Box pushing: Search time Vs. Total time

ison among random, TDPI and CBPB for the box pushing
domain with horizon 10 and varying MaxTree values. For
random and TDPI, policies of each agent were optimized
recursively until convergence. As expected, CBPB achieved
higher solution quality, but surprisingly the random heuris-
tic did not perform much worse than TDPI. We found the
reason for this was the sequential optimization of agents’
policies until convergence to the local optima. Since the
quality guarantee of the TDPI heuristic does not depend on
this sequential or recursive optimization, a better criterion
would be to use just one step of policy optimization, where
the policy of one agent is fixed either randomly or using
TDPI and the policies of other agent are set using simple
maximization.

Fig. 4(b) shows the result of this comparison. The differ-
ence between random and TDPI is much more pronounced
in this graph. The quality of the random heuristic drops
sharply compared with the previous results, whereas TDPI
provides more or less similar solution quality as with the
sequential optimization. This is good news as it shows that
the TDPI heuristic can find near-optimal policies using just
one step maximization for all MaxTree settings. Moreover,
the random heuristic relies on sequential optimization for lo-
cal convergence and the quality of this local optima can be
arbitrarily bad. Since TDPI is not so sensitive to this pro-
cess, theoretically, TDPI represents a better heuristic than

l Horizon [Search Time [Total Time [Nodes Exp. ‘

5 8.1 (2.9%) 276.6 374
10 22 (1.8%) 1250.3 55.3
15 46.2 (2.3%) 2000.6 91.4
20 68.6(2.5%) 2729 94.5

Table 3: Mars Rover: Search time Vs. Total time

Random x4 CBPB mmmm
TDPI Ezzms

Random x4 CBPB
TDPI

140
130
120
110
100

90

80

Policy value

Figure 4: Box pushing solution quality: (a) Recursive,

and (b) Single-step

random. For the Mars rover domain too, TDPI shows sim-
ilar performance achieving solution quality close to CBPB.
For MaxTree = 3 and horizon 10, CBPB achieves a quality
of 22.01 and TDPI achieved 16.9. Simiarly, for horizon 20,
CBPB achieved a quality of 37.8 and TDPI followed closely
at 32.4. These results show that when the optimal solu-
tion is hard to attain, TDPI can be adopted as a principled
heuristic approach for solving the backup problem.

6. CONCLUSION

Point-based backup constitutes the core of state-of-the-
art DEC-POMDP solvers. We have shown that performing
backups in the decentralized setting is NP-Hard, highlight-
ing another stark challenge that multi-agent sequential deci-
sion making poses. Despite this negative worst-case result,
we presented an efficient and scalable optimal algorithm as
well as a principled approximation scheme. Our optimal al-
gorithm reformulates the backup problem as a weighted con-
straint satisfaction problem and uses state-of-the-art con-
straint optimization techniques to solve it efficiently. In the
experiments, we show that our optimal approach is highly
scalable as it expands very few nodes in order to find the
optimal solution even for large backup problems. Our ap-
proach provides orders of magnitude of speedup in the pol-
icy computation over the previous best algorithm, and it
increases the number of belief points by a significant factor.
These improvements are crucial in order to obtain better
solution quality in larger DEC-POMDPs. The approximate
scheme provides near-optimal solutions to the backup prob-
lem as well as a worst-case quality guarantee.

Overall, our results show that a significant bottleneck in
DEC-POMDP approximation methods can be addressed us-
ing diverse techniques from constraint satisfaction and con-
trol theory. Finally, we note that the algorithms presented
in this paper are general in the sense that they can be in-
corporated into any point-based DEC-POMDP solver with
minor modifications, and have significant potential to scale
up other models of multi-agent decision making such as
Bayesian games.

Acknowledgments

Support for this work was provided in part by the National
Science Foundation Grant 11S-0812149 and by the Air Force
Office of Scientific Research Grant FA9550-08-1-0181.

7. REFERENCES

[1] C. Amato, J. Dibangoye, and S. Zilberstein. Incremental
policy generation for finite-horizon DEC-POMDPs. In
Proc. of the Nineteenth International Conf. on Automated
Planning and Scheduling, pages 2-9, 2009.

1322

2]

(4]

[7

(8]

[9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.
Solving transition independent decentralized markov
decision processes. Journal of Artificial Intelligence
Research, 22:423-455, 2004.

D. S. Bernstein, R. Givan, N. Immerman, and

S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27:819-840, 2002.

A. Carlin and S. Zilberstein. Value-based observation
compression for DEC-POMDPs. In Proc. of the Seventh
International Joint Conf. on Autonomous Agents and
Multiagent Systems, pages 501-508, 2008.

R. Cogill and S. Lall. An approximation algorithm for the
discrete team decision problem. SIAM Journal on Control
and Optimization, 45(4):1359-1368, 2006.

S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa.
Existential arc consistency: Getting closer to full arc
consistency in weighted CSPs. In Proc. of the International
Joint Conf. on Artificial Intelligence, pages 84-89, 2005.
R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1-2):41-85, 1999.

J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa.
Point-based incremental pruning heuristic for solving
finite-horizon DEC-POMDPs. In Proc. of the Eighth
International Joint Conf. on Autonomous Agents and
Multiagent Systems, pages 569-576, 2009.

A. Kumar, S. Zilberstein. Constraint-based dynamic
programming for decentralized POMDPs with structured
interactions. In Proc. of the Eighth International Joint
Conf. on Autonomous Agents and Multiagent Systems,
pages 561-568, 2009.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and

S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In Proc. of the
Third International Joint Conf. on Autonomous Agents
and Multiagent Systems, pages 136—143, 2004.

R. Marinescu and R. Dechter. AND/OR branch-and-bound
search for graphical models. In Proc. of the International
Joint Conf. on Artificial Intelligence, pages 224-229, 2005.
R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and

S. Marsella. Taming decentralized POMDPs: Towards
efficient policy computation for multiagent settings. In
Proc. of the International JointConf. on Artificial
Intelligence, pages 705-711, 2003.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proc. of the
Twentieth National Conf. on Artificial Intelligence, pages
133-139, 2005.

F. A. Oliehoek, M. T. J. Spaan, and N. A. Vlassis. Optimal
and approximate g-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research,
32:289-353, 2008.

J. Pineau, G. Gordon, and S. Thrun. Anytime point-based
approximations for large POMDPs. Journal of Artificial
Intelligence Research, 27:335-380, 2006.

S. Seuken and S. Zilberstein. Improved memory-bounded
dynamic programming for decentralized POMDPs. In Proc.
of the Twenty-Third Conf. on Uncertainty in Artificial
Intelligence, 2007.

S. Seuken and S. Zilberstein. Memory-bounded dynamic
programming for DEC-POMDPs. In Proc. of the Twentieth
International Joint Conf. on Artificial Intelligences, pages
2009-2015, 2007.

M. Spaan and N. Vlassis. Perseus: Randomized point-based
value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195-220, 2005.

J. N. Tsitsiklis and M. Athans. On the complexity of
decentralized decision making and detection problems.
IEEE Trans. on Automatic Control, 30(2):440-446, 1985.

